2010
DOI: 10.1002/ep.10455
|View full text |Cite
|
Sign up to set email alerts
|

Interpolation techniques and associated software for environmental data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
34
0
7

Year Published

2012
2012
2017
2017

Publication Types

Select...
9
1

Relationship

3
7

Authors

Journals

citations
Cited by 57 publications
(42 citation statements)
references
References 29 publications
1
34
0
7
Order By: Relevance
“…The same happened to the ANNs developed for spatial interpolation of KE>25 for May (KE computed by WM equation). Akkala et al (2010), ANN interpolators work well with sparse data irregularly distributed, just as for the data presented (Figure 1). The ANNs, in order to have better performance, need consistent training and the data-set used must represent the nuances of the terrain to be modeled (Teegavarapu 2007, Miranda et al 2009, Sivapragasam et al 2010, as was the case in this study.…”
Section: Dif = Percentage Difference Of the Values Computed For Eachsupporting
confidence: 54%
“…The same happened to the ANNs developed for spatial interpolation of KE>25 for May (KE computed by WM equation). Akkala et al (2010), ANN interpolators work well with sparse data irregularly distributed, just as for the data presented (Figure 1). The ANNs, in order to have better performance, need consistent training and the data-set used must represent the nuances of the terrain to be modeled (Teegavarapu 2007, Miranda et al 2009, Sivapragasam et al 2010, as was the case in this study.…”
Section: Dif = Percentage Difference Of the Values Computed For Eachsupporting
confidence: 54%
“…In the corresponding biological climate condition, the surface of the original rock is gradually turned into soil through physical and chemical weathering, and biological degradation [31][32][33][34]. We found that parent materials and pedogenic processes were major factors contributing to high concentrations of heavy metals in soil [26].…”
Section: Resultsmentioning
confidence: 99%
“…A superioridade da krigagem sobre o IPD explica-se pelo fato de que a primeira é indicada para a aplicação em regiões onde a distribuição espacial dos dados observados é boa e sem descontinuidades significativas (Tabela 3). O IPD é indicado para locais com distribuição espacial boa e com alta densidade de estações (Akkala et al, 2010), o que não é o caso do presente trabalho. Além disso, a krigagem, a partir dos dados de entrada, determina os melhores parâmetros para modelagem da função matemática de interpolação, por meio do ajuste do semivariograma, o que resulta em boas estimativas, quando os dados são bem representativos da região a ser modelada (Sivapragasam et al, 2010).…”
Section: Resultsunclassified