“…(B) Whereas in the second scenario (B), CX-ToM thinks that users do not trust the model's ability in correctly classifying Person, and therefore shows a faultline explanation using categories Woman and Deer. Biran and Cotton, 2017;Darlington, 2013;Kim, 2017a, 2017b;Goodman and Flaxman, 2017;Hoffman, 2017;Keil, 2006;Kulesza et al, 2010Kulesza et al, , 2011Moore and Swartout, 1990;Walton, 2004;Douglas, 2007;Walton, 2011;Sheh, 2017;Sheh and Monteath, 2018;Tapaswi et al, 2016;Williams et al, 2016;Agarwal et al, 2018;Akula et al, 2018Akula et al, , 2019aAkula et al, , 2019bAkula et al, , 2019cAkula et al, , 2021dAkula and Zhu, 2019;Gupta et al, 2016;Bivens et al, 2017;Zhang et al, 2019aZhang et al, , 2020aZhang et al, , 2020b. Most prior work in explaining CNN's predictions has focused on generating explanations using feature visualization and attribution.…”