Objectives
This study aims to understand the statistical significance of the associations between diagnoses and symptoms based on simulations that have been used to understand the interpretability of mental illness diagnoses.
Methods
The symptoms for the diagnosis of major depressive episodes, dysthymic disorder, and manic episodes were extracted from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR, American Psychiatric Association, Philadelphia, Pennsylvania). Without real-world symptom data, we simulated populations using various combinations of symptom prevalence and correlations. Assuming symptoms occurred with similar prevalence and correlations, for each combination of symptom prevalence (0.05, 0.1, 0.3, 0.5, and 0.7) and correlation (0, 0.1, 0.4, 0.7, and 0.9), 100 cohorts with 10,000 individuals were randomly created. Diagnoses were made according to the DSM-IV-TR criteria. The associations between the diagnoses and their input symptoms were quantified with odds ratios and correlation coefficients. P-values from 100 cohorts for each combination of symptom prevalence and correlation were summarized.
Results
Three mental illness diagnoses were not significantly correlated with their own symptoms in all simulations, particularly when symptoms were not correlated, except for the symptom in the major criteria of major depressive episodes or dysthymic disorder. The symptoms for the diagnosis of major depressive episodes and dysthymic disorder were significantly correlated with these two diagnoses in some simulations, assuming 0.1, 0.4, 0.7, or 0.9 symptom correlations, except for one symptom. The overlap in the input symptoms for the diagnosis of major depressive episodes and dysthymic disorder also leads to significant correlations between these two diagnoses, assuming 0.1, 0.4, 0.7, and 0.9 correlations between input symptoms. Manic episodes are not significantly associated with the input symptoms of major depressive episodes and dysthymic disorder.
Conclusion
There are challenges to establish the causation between psychiatric symptoms and mental illness diagnoses. There is insufficient prevalence and incidence data to show all psychiatric symptoms exist or can be observed in patients. The diagnostic accuracy of symptoms to detect a disease cause is far from perfect. Assuming the symptoms of three mood disorders may present in patients, three diagnoses are not significantly associated with all psychiatric symptoms used to diagnose them. The diagnostic criteria of the three diagnoses have not been designed to guarantee significant associations between symptoms and diagnoses. Because statistical associations are important for making causal inferences, there may be a lack of causation between diagnoses and symptoms. Previous research has identified factors that lead to insignificant associations between diagnoses and symptoms, including biases due to data processing and a lack of...