[1] This article introduces a robust method for characterizing fractured reservoirs using tracer and flow-rate data. The flow-rate data are used to infer the interwell connectivity matrix, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find a function called the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods was developed to estimate the tracer kernels in situations where data are collected at variable flow rate or variable-injected concentration conditions. This characterization method was developed to describe enhanced geothermal systems, although it works well in general for characterizing incompressible flow in fractured reservoirs (e.g., geothermal, carbon sequestration, radioactive waste and waterfloods of oil fields) where transverse dispersivity can be considered negligible and production takes place at constant bottomhole pressure conditions. The inferred metrics can be used to sketch informative field maps and predict tracer breakthrough curves at variable flow-rate conditions. Citation: Juliusson, E., and R. N. Horne (2013), Characterization of fractured reservoirs using tracer and flow-rate data, Water Resour.