The effect of the dislocation line density produced by the relaxation of strain in GaAs/In x Ga 1Ϫx As multiquantum wells where xϭ0.155-0.23 has been studied. There is a strong correlation between the dark line density, observed by cathodoluminescence, before processing of the wafers into photodiode devices, and the subsequent low forward bias ͑Ͻ1.5 V͒ dark current densities of the devices. A comparison is made of the correlation between the reverse bias current density and dark line density and it is found that, in this range of strain, the forward bias current density varies more. Two growth methods, molecular beam epitaxy and metal organic vapor phase epitaxy, have been used to produce the wafers and no difference between the growth methods has been found in dark line or current density variations with strain.