The genus Vigna comprises more than 200 species of which 7 are of tremendous agronomic importance. These are grown mainly in the warm temperate and tropical regions of the world. Valued for their grains with high and easily digestible proteins, these crops are also known as forage, green manure, and cover crops. Due to a short life cycle, these are suitable as catch crops and also fi t well in intercropping, mixed or relay cropping. For genetic improvement of cultivated vignas, mainly cultivated germplasm and exotic lines have been used so far. However, despite development of several improved cultivars in different Vigna crops, biotic and abiotic stresses still remain the major constraints in realizing their true yield potential. While plethora of genes conferring resistance/tolerance to these stresses have already been transferred from cultivated germplasm, wild genetic resources offer additional sources of useful alien variation which can be incorporated in cultivated Vigna through alien gene transfer. With better understanding of the processes behind pollen germination and pollen tube growth, fertilization, embryo and endosperm development and inheritance pattern, strategies have been developed to avoid pre-and post-fertilization barriers in successful distant hybridization leading to alien gene transfer. These include making reciprocal crosses, repeated pollination, hormonal treatment of fl ower buds, polyploidization, use of bridge species and most importantly, embryo rescue which have increased success rate of alien gene transfer in Vigna through sexual hybridization. Nevertheless, alien gene transfer through genetic transformation and use of molecular breeding tools still lag behind in Vigna and therefore need special attention. The signifi cant achievements made in different Vigna species in alien gene transfer and their utilization have been discussed in this chapter.