Aims. We study the effects of local environmental conditions affecting the diffuse interstellar band (DIB) carriers within the Upper Scorpius subgroup of the Sco OB2 association. The aim is to reveal how the still unidentified DIB carriers respond to different physical conditions prevailing in interstellar clouds, in order to shed light on the origin of the DIB carriers. Methods. We obtained optical spectra with FEROS on the ESO 1.52 m telescope at La Silla, Chile, and measured the equivalent widths of five DIBs (at 5780, 5797, 6196, 6379, and 6613 Å) as well as those of absorption lines of di-atomic molecules (CH, CH + , CN) and atoms (K i, Ca i) towards 89 targets in the direction of Upper Scorpius. We construct a simple radiative transfer and chemical network model of the diffuse interstellar medium (ISM) sheet in front of Upp Sco to infer the effective radiation field. Results. By measuring the DIB and molecular spectrum of diffuse clouds towards 89 sightlines in the Upper Scorpius region, we have obtained a valuable statistical dataset that provides information on the physical conditions that influence the band strengths of the DIBs. Both the interstellar radiation field strength, I UV , and the molecular hydrogen fraction, f H 2 , have been derived for 55 sightlines probing the Upp Sco ISM. We discuss the relations between DIB strengths, CH and CH + line strengths, E (B−V) , I UV , and f H 2 . The ratio between the 5780 and 5797 Å DIBs reveals a (spatial) dependence on the local environment in terms of cloud density and exposure to the interstellar radiation field, reflecting the molecular nature of these DIB carriers.