At each time of day, one control (rest) and one exercise (cycle ergometer, 45 min, 50% of VO 2 peak) sessions were performed. Clinic BP, cardiac output (CO), systemic vascular resistance (SVR), stroke volume (SV), heart rate (HR), cardiac autonomic modulation, vasomotor modulation, baroreflex sensitivity, muscle blood flow, vasodilation and plasma concentrations of norepinephrine and epinephrine were measured before and after the intervention in each session. In addition, ambulatory BP was measured for 24 hours after the experimental sessions and the concentration of melatonin metabolite 6-sulfatoxymelatonin produced during the sleep before and after each session was assessed. Data were analyzed by 2 or 3-way ANOVA for repeated measures as well as by paired t test or Wilcoxon test, and the associations between variables were calculated by Pearson and Spearman correlations. P ≤ 0.05 was accepted as significant. Exercise produced a greater systolic BP reduction in the morning than the evening (-7 ± 3 -3 ± 4 mmHg, P<0.05), while the diastolic blood pressure decreased similarly in both times of day (-3±3 vs -3±3 mmHg, respectively, P<0.05). CO decreased and SVR tended to increased after exercise in the morning, while these variables did not change after exercise in the evening (-460 ± 771ml/min and +2.0 ± 3.8 mmHg.min/l; +148 633ml/min ± 2.8 and -1.4 ± mmHg.min/l , respectively). VS decreased similarly after 9 exercise in both times of day (-12 ± 15 vs -9 ± 10 ml, P<0.05), while the HR increased more in the evening (+7 ± 5 vs +10 ± 5 bpm, P<0.05). This occurred because exercise increased sympathovagal balance only in the evening (+1.5 ± 1.6, P<0.05), whereas vasomotor modulation decreased only after exercise performed in the morning (-0.5 ± 0.9 mmHg 2 , P<0.05). Spontaneous baroreflex sensitivity, measured by the average gain of positive and negative sequences (± SBR) decreased after the exercise in both times of day. The exercise did not affect arm blood flow and vasodilatory capacity, but increased leg vasodilation when exercise was performed in the evening (+116 ± 172 au, P<0.05). In regard to ambulatory measures, the exercise performed in the evening reduced asleep BP and BP measured 5-7hr post-exercise. The exercise did not have any effect in the norepinephrine, epinephrine and 6-sulphatoxymelatonin. Thus, there was not consistent correlation between the effect of exercise in hormone levels and in hemodynamic, autonomic and ambulatory responses. In conclusion, in prehypertensives, a single bout of aerobic exercise reduces post-exercise BP regardless if the exercise is performed in the morning or in the evening, however a greater hypotensive effect is observed in the morning for systolic BP. This greater systolic hypotensive effect is due to the decrease in CO in the morning, related to a decrease in SV and a lower increase in HR after the exercise performed in the morning, which is caused by a lower increase in sympathovagal balance and is accompanied by a smaller increase in active muscles vasodilatory capacit...