Molecular genetic assays can contribute to conservation of aquatic taxa by assessing evolutionary and taxonomic distinctiveness, levels of genetic variation within and between populations, and the degree of introgression with introduced taxa. The Athabasca River drainage of western Alberta, Canada is one of only three (and the largest) drainages flowing east of the continental divide that contain native populations of rainbow trout (Salmonidae: Oncorhynchus mykiss). The ''Athabasca'' rainbow trout has been considered a preglacial relict worthy of special conservation measures. In addition, the native range of Athabasca rainbow trout has seen many instances of introductions of non-native populations since the beginning of the 20th century. We assayed rainbow trout from the Athabasca River drainage, from hatchery populations, and from representative populations in adjacent regions (N = 49 localities) for variation at 10 microsatelite loci to assess the level of evolutionary distinctiveness of Athabasca rainbow trout, and to assess the levels of introgression with non-native hatchery fish. We found that native Athabasca rainbow trout did not form a distinctive genetic assemblage and that the greatest amount of allele frequency variation was attributable to contemporary drainage systems (29.3%) rather than by a Athabasca/non-Athabasca distinction (12.6%). We found that 78% of all fish were confidently assigned to a ''wild'' rather than a ''hatchery'' genetic grouping and that most of the inferred introgression with hatchery fish was restricted to a few localities (N = 6). Our results suggest that: (i) Athabasca River rainbow trout are likely postglacial immigrants from adjacent populations of the Fraser River, and (ii) that there is no evidence of widespread introgression of hatchery alleles into native Athabasca River drainage rainbow trout.