The blood pressure changes induced by the intra-aortic balloon pump (IABP) are expected to create clinical improvement in terms of coronary perfusion and myocardial oxygen consumption. However, the measured effects reported in literature are inconsistent. The aim of this study was to investigate the influence of ischemia on IABP efficacy in healthy hearts and in shock. Twelve slaughterhouse porcine hearts (hearts 1-12) were connected to an external circulatory system, while physiologic cardiac performance was restored. Different clinical scenarios, ranging from healthy to cardiogenic shock, were simulated by step-wise administration of negative inotropic drugs. In hearts 7-12, severe global myocardial ischemia superimposed upon the decreased contractile states was created. IABP support was applied in all hearts under all conditions. Without ischemia, the IABP induced a mild increase in coronary blood flow and cardiac output. These effects were strongly augmented in the presence of persisting ischemia, where coronary blood flow increased by 49 ± 24% (P < 0.01) and cardiac output by 17 ± 6% (P < 0.01) in case of severe pump failure. As expected, myocardial oxygen consumption increased in case of ischemia (21 ± 17%; P < 0.01), while it slightly decreased without (-3 ± 6%; P < 0.01). In case of progressive pump failure due to persistent myocardial ischemia, the IABP increased hyperemic coronary blood flow and cardiac output significantly, and reversed the progressive hemodynamic deterioration within minutes. This suggests that IABP therapy in acute myocardial infarction is most effective in patients with viable myocardium, suffering from persistent myocardial ischemia, despite adequate epicardial reperfusion.