Neuronal metabolic and electrical activity is associated with shifts in intracellular pH (pH(i)) proton activity and state-dependent changes in activation of signaling pathways in the plasma membrane, cytosol, and intracellular compartments. We investigated interactions between two intracellular messenger ions, protons and calcium (Ca²(+)), in salamander photoreceptor inner segments loaded with Ca²(+) and pH indicator dyes. Resting cytosolic pH in rods and cones in HEPES-based saline was acidified by ∼0.4 pH units with respect to pH of the superfusing saline (pH = 7.6), indicating that dissociated inner segments experience continuous acid loading. Cytosolic alkalinization with ammonium chloride (NH₄Cl) depolarized photoreceptors and stimulated Ca²(+) release from internal stores, yet paradoxically also evoked dose-dependent, reversible decreases in [Ca²(+)](i). Alkalinization-evoked [Ca²(+)](i) decreases were independent of voltage-operated and store-operated Ca²(+) entry, plasma membrane Ca²(+) extrusion, and Ca²(+) sequestration into internal stores. The [Ca²(+)](i)-suppressive effects of alkalinization were antagonized by the fast Ca²(+) buffer BAPTA, suggesting that pH(i) directly regulates Ca²(+) binding to internal anionic sites. In summary, this data suggest that endogenously produced protons continually modulate the membrane potential, release from Ca²(+) stores, and intracellular Ca²(+) buffering in rod and cone inner segments.