Recently there has been a reckoning in the dopamine field. This has suggested that the dopamine prediction error may function as a teaching signal, without endowing preceding events with value. We studied the cognitive basis of intracranial self-stimulation (ICSS), a setting where dopamine appears to be valuable. Physiological frequencies seen during reinforcement learning did not support robust ICSS or promote behavior that would indicate the stimulation was represented as a meaningful reward in a specific or general sense. This was despite demonstrating that this same physiologically-relevant signal could function as a teaching signal. However, supraphysiological frequencies supported robust ICSS where the stimulation was represented as a specific sensory event, which acted as a goal to motivate behavior. This demonstrates that dopamine neurons only support ICSS at supraphysiological frequencies, and in a manner that does not reflect our subjective experience with endogenous firing of dopamine neurons during reinforcement learning.