The purpose of this article is to demonstrate the influence of factors related to selected datums or datum systems on deviation values of gear tooth geometry, and, consequently, on the accuracy class of the aircraft bevel gear design. The item subjected to measurements was a bevel gear pinion machined by grinding on a brand new Klingelnberg G27 CNC machine tool. In the measurements, a P40 coordinate machine with a rotary table was used. The first step in the analysis was a multiple check of the accuracy of datum surfaces (the plane and cylindrical surfaces) and establishing the deviation of their dimensions and geometrical conditions (roundness, radial run-out, axial run-out). Next, tooth measurements were taken using the same setup with 13 different datum systems. The results were subjected to analysis, which yielded conclusions concerning the significance of the selection of datum systems for the correct evaluation of bevel gear accuracy. Findings indicated which datum systems are optimal and which prove insufficient to obtain reliable results. This can be used as a practical recommendation for gear tooth designers in establishing control datums for designed bevel gear members.