Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nonribosomal peptide synthetases (NRPS) are multifunctional proteins that catalyze the synthesis of the peptide products with enormous biological potential. The process of biosynthesis starts with the adenylation (A) domain, which during the catalytic cycle undergoes extensive structural rearrangements. In this paper, we present the first study of the tyrocidine synthetase 1 A-domain (TycA-A) fluorescence properties. The TycA-A protein contains five potentially fluorescent Trp residues at positions 227, 301, 323, 376 and 406. The contribution of each Trp to the TycA-A emission was determined using protein variants bearing single Trp to Phe substitutions. The accessibility of the Trp side chains during adenylation showed that only W227 is affected by substrate binding. The protein variant containing solely fluorescent W227 residue was constructed and further used as a probe to explore the binding effect of different non-cognate amino acid substrates. The results indicate a different accessibility of W227 residue in the presence of non-cognate amino acids, which might offer an explanation for the higher aminoacyl-adenenylate leakage. Overall, our results suggest that intrinsic tryptophan fluorescence could be used as a method to probe the effect of substrate binding on the local structure in NRPS adenylation domains.
Nonribosomal peptide synthetases (NRPS) are multifunctional proteins that catalyze the synthesis of the peptide products with enormous biological potential. The process of biosynthesis starts with the adenylation (A) domain, which during the catalytic cycle undergoes extensive structural rearrangements. In this paper, we present the first study of the tyrocidine synthetase 1 A-domain (TycA-A) fluorescence properties. The TycA-A protein contains five potentially fluorescent Trp residues at positions 227, 301, 323, 376 and 406. The contribution of each Trp to the TycA-A emission was determined using protein variants bearing single Trp to Phe substitutions. The accessibility of the Trp side chains during adenylation showed that only W227 is affected by substrate binding. The protein variant containing solely fluorescent W227 residue was constructed and further used as a probe to explore the binding effect of different non-cognate amino acid substrates. The results indicate a different accessibility of W227 residue in the presence of non-cognate amino acids, which might offer an explanation for the higher aminoacyl-adenenylate leakage. Overall, our results suggest that intrinsic tryptophan fluorescence could be used as a method to probe the effect of substrate binding on the local structure in NRPS adenylation domains.
Background: : Heat shock proteins (HSPs) represent a group of important proteins which are produced by all kinds of organisms especially under stressful conditions. DnaK, an Hsp70 homolog in prokaryotes, has indispensable roles when microbes was confronted with stress conditions. However, few data on DnaK from Rhodococcus sp. were available in the literature. In a previous study, we reported that toluene and phenol stress gave rise to a 29.87-fold and 3.93-fold increase for the expression of DnaK from R. ruber SD3, respectively. Thus, we deduced DnaK was in correlation with the organic solvent tolerance of R. ruber SD3. Objective: To elucidate the role of DnaK in the organic solvent tolerance of R. ruber SD3, expression, purification and functional analysis of Dnak from R. ruber SD3 were performed in the present paper. Methods: In this article, DnaK from R. ruber SD3 was heterologously expressed in E. coli BL21(DE3) and purified by affinity chromatography. Functional analysis of DnaK was performed using determination of kinetics, docking, assay of chaperone activity and microbial growth. Results: The recombinant DnaK was rapidly purified by affinity chromatography with the purification fold of 1.9 and the recovery rate of 57.9%. Km, Vmax and Kcat for Dnak from R. ruber SD3 were 80.8 μM, 58.1 nmol/min and 374.3 S-1, respectively. The recombinant protein formed trimer in vitro, with the calculated molecular weight of 214 kDa. According to In-silico analysis, DnaK interacted with other molecular chaperones and some important proteins in the metabolism. The specific activity of catalase in the presence of recombinant DnaK was 1.85 times or 2.00 times that in the presence of BSA or Tris-HCl buffer after exposure to 54 °C for 1h. E. coli transformant with pET28-dnak showed higher growth than E. coli transformant with pET28 at 43°C and in the presence of phenol, respectively. Conclusion: The biochemical properties and the interaction analysis of DnaK from R. ruber SD3 deepened our understanding of DnaK function. DnaK played an important role in microbial growth when R. ruber was subjected to various stress such as heating and organic solvent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.