O aprendizado de máquina tem sido utilizado na segurança cibernética para suprir as limitações das técnicas de identificação de padrões no tráfego de rede. A existência de inúmeros algoritmos na literatura faz com que a escolha de qual é o mais adequado para a detecção de intrusão, não seja uma tarefa trivial. Neste trabalho é realizada uma análise comparativa de 6 algoritmos de aprendizado de máquina supervisionado avaliando o impacto da agregação dos fluxos IP nas predições, tempo de treinamento e teste. Os experimentos mostraram que o método de agregação melhora a classificação e reduz o tempo de processamento dos modelos. Nas análises realizadas, o Decision Tree obteve o melhor equilíbrio nos resultados.