The mosquito Aedes japonicus (Diptera: Culicidae) has spread rapidly through North America since its introduction in the 1990s. The mechanisms underlying its establishment in container communities occupied by competitors Aedes triseriatus and Aedes albopictus are unclear. Possibilities include (A) temporal separation of A. japonicus from other Aedes, (B) oviposition avoidance by A. japonicus of sites containing heterospecific Aedes larvae, and (C) non-additive competitive effects in assemblages of multiple Aedes. Containers sampled throughout the summer in an oak-hickory forest near Eureka, MO showed peak abundance for A. japonicus occurring significantly earlier in the season than either of the other Aedes species. Despite this, A. japonicus co-occurred with one other Aedes species in 53 % of samples when present, and co-occurred with both other Aedes in 18 % of samples. In a field oviposition experiment, A. japonicus laid significantly more eggs in forest edge containers than in forest interior containers, but did not avoid containers with low or high densities of larvae of A. triseriatus, A. albopictus, or both, compared to containers without larvae. Interspecific competitive effects (measured as decrease in the index of performance, λ′) of A. triseriatus or A. albopictus alone on A. japonicus larvae were not evident at the densities used, but the effect of both Aedes combined was significantly negative and super-additive of effects of individual interspecific competitors. Thus, neither oviposition avoidance of competitors nor non-additive competitive effects contribute to the invasion success of A. japonicus in North America. Distinct seasonal phenology may reduce competitive interactions with resident Aedes.