Though anthropogenic impacts are often considered harmful to species, human modifications to the landscape can actually create novel niches to which other species can adapt. These “domestication” processes are especially important in the context of arthropod disease vectors, where ecological overlap of vector and human populations may lead to epidemics. Here, we present results of a global genetic study of one such species, the dengue and yellow fever mosquito, Aedes aegypti, whose evolutionary history and current distribution have been profoundly shaped by humans. We used DNA sequences of four nuclear genes and 1504 SNP markers developed with RAD-tag sequencing to test the hypothesis that Ae. aegypti originated in Africa, where a domestic form arose and spread throughout the tropical and subtropical world with human trade and movement. Results confirmed African ancestry of the species, and supported a single subspeciation event leading to the pantropical domestic form. Additionally, genetic data strongly supported the hypothesis that human trade routes first moved domestic Ae. aegypti out of Africa into the New World, followed by a later invasion from the New World into Southeast Asia and the Pacific. These patterns of domestication and invasion are relevant to many species worldwide, as anthropogenic forces increasingly impact evolutionary processes.
The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.
We report the discovery of large numbers of Haemaphysalis longicornis Neumann (Ixodida: Ixodidae) infesting a sheep in Hunterdon County, New Jersey, United States. All life stages were found on the sheep, which had no history of travel outside the country. H. longicornis is native to East Asia, and there are invasive populations in Australia, New Zealand and several Pacific islands, where this tick is a major livestock pest. It is currently unknown whether the New Jersey collections represent a limited or established population, but because this species could present a significant threat to human and animal health in the United States, vigilance is encouraged.
Background Aedes albopictus is an invasive species which continues expanding its geographic range and involvement in mosquito-borne diseases such as chikungunya and dengue. Host selection patterns by invasive mosquitoes are critically important because they increase endemic disease transmission and drive outbreaks of exotic pathogens. Traditionally, Ae. albopictus has been characterized as an opportunistic feeder, primarily feeding on mammalian hosts but occasionally acquiring blood from avian sources as well. However, limited information is available on their feeding patterns in temperate regions of their expanded range. Because of the increasing expansion and abundance of Ae. albopictus and the escalating diagnoses of exotic pathogens in travelers returning from endemic areas, we investigated the host feeding patterns of this species in newly invaded areas to further shed light on its role in disease ecology and assess the public health threat of an exotic arbovirus outbreak.Methodology/Principal FindingsWe identified the vertebrate source of 165 blood meals in Ae. albopictus collected between 2008 and 2011 from urban and suburban areas in northeastern USA. We used a network of Biogents Sentinel traps, which enhance Ae. albopictus capture counts, to conduct our collections of blooded mosquitoes. We also analyzed blooded Culex mosquitoes collected alongside Ae. albopictus in order to examine the composition of the community of blood sources. We found no evidence of bias since as expected Culex blood meals were predominantly from birds (n = 149, 93.7%) with only a small proportion feeding on mammals (n = 10, 6.3%). In contrast, Aedes albopictus fed exclusively on mammalian hosts with over 90% of their blood meals derived from humans (n = 96, 58.2%) and domesticated pets (n = 38, 23.0% cats; and n = 24, 14.6% dogs). Aedes albopictus fed from humans significantly more often in suburban than in urban areas (χ2, p = 0.004) and cat-derived blood meals were greater in urban habitats (χ2, p = 0.022). Avian-derived blood meals were not detected in any of the Ae. albopictus tested.Conclusions/SignificanceThe high mammalian affinity of Ae. albopictus suggests that this species will be an efficient vector of mammal- and human-driven zoonoses such as La Crosse, dengue, and chikungunya viruses. The lack of blood meals obtained from birds by Ae. albopictus suggest that this species may have limited exposure to endemic avian zoonoses such as St. Louis encephalitis and West Nile virus, which already circulate in the USA. However, growing populations of Ae. albopictus in major metropolitan urban and suburban centers, make a large autochthonous outbreak of an arbovirus such as chikungunya or dengue viruses a clear and present danger. Given the difficulties of Ae. albopictus suppression, we recommend that public health practitioners and policy makers install proactive measures for the imminent mitigation of an exotic pathogen outbreak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.