For road safety, braking system performance has become a very important requirement for car vehicle manufacturers and passengers. To this end, vehicle designers must understand the characteristics of tribological behavior and the causes of their variation in properties. This paper analyzes the tribological behavior (at friction and wear) of the most recent material couples of the braking disk-pad system affected by their structural change through the implications on the braking system stability, reliability and suitable characterizations. Obtaining information to design a very efficient braking system and assessing the influence of the material’s structural changes on its stability has become a necessity. This has been made possible by using several methods of testing a brake disk-pad couple on various devices intended for this purpose. The materials of the contact surface disk-brake pad with their tribological performance (friction, wear), especially the friction coefficient, present particular importance. Also, system components’ reliability, heat transfer and the noise and vibration of the brake disk-pad couple are vital to the correct operation of the braking system and should be given special attention. The test results obtained define the friction patterns and the influence of structural changes and other environmental factors that can be used in computer analysis.