2022
DOI: 10.1155/2022/8103046
|View full text |Cite
|
Sign up to set email alerts
|

Investigating a Class of Generalized Caputo-Type Fractional Integro-Differential Equations

Abstract: In this article, we prove some new uniqueness and Ulam-Hyers stability results of a nonlinear generalized fractional integro-differential equation in the frame of Caputo derivative involving a new kernel in terms of another function ψ . Our approach is based on Babenko’s technique, Banach’s fixed point theorem, and Banach’s space of absolutely continuous functions. The obtained results are demonstrated by constructing numeri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 24 publications
0
1
0
Order By: Relevance
“…This result was generalized to differential equations, and it was believed that Obloza was the first to make this generalization [28], after which Alsina and Ger published a scientific paper containing what is known today as the Hyers-Ulam stability [29], Rus investigated the Hyers-Ulam stability of differential and integral equations using the Gronwall lemma [30]. Recently, the Hyers-Ulam stability problems of several differential equations were investigated by using the method of integral operators, see [31][32][33][34].…”
Section: Introductionmentioning
confidence: 99%
“…This result was generalized to differential equations, and it was believed that Obloza was the first to make this generalization [28], after which Alsina and Ger published a scientific paper containing what is known today as the Hyers-Ulam stability [29], Rus investigated the Hyers-Ulam stability of differential and integral equations using the Gronwall lemma [30]. Recently, the Hyers-Ulam stability problems of several differential equations were investigated by using the method of integral operators, see [31][32][33][34].…”
Section: Introductionmentioning
confidence: 99%