We present a 2-local quantum algorithm for graph isomorphism GI based on an adiabatic protocol. By exploiting continuous-time quantum-walks, we are able to avoid a mere diffusion over all possible configurations and to significantly reduce the dimensionality of the visited space. Within this restricted space, the graph isomorphism problem can be translated into the search of a satisfying assignment to a 2-SAT formula without resorting to perturbation gadgets or projective techniques. We present an analysis of the execution time of the algorithm on small instances of the graph isomorphism problem and discuss the issue of an implementation of the proposed adiabatic scheme on current quantum computing hardware.