iron-based coatings have exhibited good mechanical properties, such as high hardness and good wear resistance, which are desirable properties in applications such as automobile brake rotors. iron-based coatings are also good replacements for Co- and Ni-based coatings, which are costly and could have health and environmental concerns due to their toxicity. In this research, three different iron-based coatings were deposited using the Detonation Gun Spraying (DGS) technology onto aluminum substrates, including the steel powders alone (unreinforced), and steel powders mixed with Fe3C and SiC particles, respectively. The microstructural characteristics of these coatings and mechanical properties, such as hardness and wear resistance, were examined. The morphology and structure of the feedstock powders were affected by the exposure to high temperature during the spraying process and rapid solidification of steel powders that resulted in the formation of an amorphous structure. While it was expected that steel particles reinforced with hard ceramic particles would result in increased hardness, instead, the unreinforced steel coating had the highest hardness, possibly due to a higher degree of amorphization in the coating than the other two. The microstructural observation confirmed the formation of dense coatings with good adhesion between layers. All samples were subjected to ball-on-disk wear tests at room temperature (23 °C) and at 200 °C. Similar wear resistances of the three samples were obtained at room temperature. At 200 °C, however, both ceramic reinforced composite samples exhibited higher wear rates in line with the reduction in their hardness values. This work explains, from the microstructural point of view, why adding hard particles to steel powers may not always lead to coatings with higher hardness and better wear resistance.