Alloy 625 is a Ni-based superalloy which is often a good solution to surface engineering problems involving high temperature corrosion, wear, and thermal degradation. Coatings of alloy 625 can be efficiently deposited by thermal spray methods such as Air Plasma Spraying. As in all thermal spray processes, the final properties of the coatings are determined by the spraying parameters. In the present study, a D-optimal experimental design was used to characterize the effects of the APS process parameters on in-flight particle temperature and velocity, and on the oxide content and porosity in the coatings. These results were used to create an empirical model to predict the optimum deposition conditions. A second set of coatings was then deposited to test the model predictions. The optimum spraying conditions produced a coating with less than 4% oxide and less than 2.5% porosity. The process parameters which exhibited the most important effects directly on the oxide content in the coating were particle size, spray distance, and Ar flow rate. The parameters with the largest effects directly on porosity were spray distance, particle size, and current. The particle size, current, and Ar flow rate have an influence on particle velocity and temperature but spray distance did not have a significant effect on either of those characteristics. Thus, knowledge of the in-flight particle characteristics alone was not sufficient to control the final microstructure. The oxidation index and the melting index incorporate all the parameters that were found to be significant in the statistical analyses and correlate well with the measured oxide content and porosity in the coatings.
Climbing lizards display numerous advanced features in their locomotion, notably a method to quickly switch between a state of low and high adhesive force capacity. Inspired by the gecko's adhesive switching, a method of mechanically switching between low and high adhesive states is reported. In particular, the first switching of an adhesive system using only a change in system compliance is demonstrated. Mechanical clamping and a novel magnetic clamping system are used to switch an iron/PDMS composite adhesive between a soft and rigid state. The switch in compliance directly influences the maximum load of the adhesive as meas-ured in lap-shear. Notably, contact area and the contact chemistry remain unaltered despite significant changes in force capacity. The demonstration of a compliance-only switching mechanism has broad implications for understanding natural adhesive systems-especially in organisms that can dynamically alter their rigidity (e.g. cells).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.