Yarrowia lipolytica is a widely used microorganism in biotechnology since it is capable of producing a wide range of products (lipase, citric acid, polyols). A less-studied related strain is Y. divulgata, which is also capable of erythritol production in even higher concentration than most Y. lipolytica wild strains from glycerol as renewable feedstock. Thus, the aim of this work was to investigate Y. divulgata’s complex utilisation based on erythritol fermentation from glycerol to establish a Yarrowia-based biorefinery in which both the fermentation broth and separated cells are converted into high added-value products (erythritol, bioemulsifier, cosmetic ingredient, i.e., skin moisturizer). An important parameter of erythritol fermentation is an adequate oxygen level, so both the constant oxygen level and oxygen absorption rate were investigated regarding the three target products. DO (dissolved oxygen) = 10, 20, 30, 40% was examined in the bioreactor, and a KLa range of 18–655 h−1 was investigated in both the bioreactor and in different types of shaking flasks, applying two different glycerol levels (100–150 g/L). The results showed that the Yarrowia divulagata NCAIM 1485 strain could produce one of the highest amounts of erythritol (44.14 ± 1 g/L) among wild-type yeasts from 150 g/L glycerol beside a KLa value of 655 h−1. Cell-lysates skin hydrating activity was the highest (12%) when DO = 20% (KLa 26.4 h−1) was applied. In all cases, the collected samples had an emulsification index above 69% which did not decrease below 54% after 24 h, showing good stability. Since Y. divulgata fermentations resulted in three high added-value products at the same time from a renewable raw material (glycerol), we concluded that it is suitable for complex utilisation in a microbial biorefinery, since the fermentation broth can be used for the isolation of a sweetener and bioemulsifier; meanwhile, the separated cells can be processed for cosmetic application as a skin moisturizer.