A novel high breakdown voltage lateral bipolar junction transistor (LBJT) on silicon-oninsulator (SOI) is proposed. The novelty of the device is the use of the combination of multistep-doped drift region and multistep buried oxide. The steps in doping and in oxide thickness have been used as a replacement for much complex linearly varying drift doping and linearly varying oxide thickness. The LBJT structure incorporating the combination of multistep doping and multistep oxide is analyzed for electrical characteristics using a two-dimensional numerical simulator MEDICI. Numerical simulation has demonstrated that the breakdown voltage of the proposed device with a two-zone step doped (TZSD) drift region is >150% higher than the conventional device. It has been observed that increasing the number of doping zones to 3 from 2 results in a >40% rise in breakdown voltage. The proposed device gives high breakdown voltage even at high doping concentration in the collector drift region. This reduces the on-resistance of the device and thus improves its speed. The dependence of breakdown voltage on various device parameters has been extensively studied to achieve optimum device performance. A process flow for the device fabrication is also being proposed.