The conversion of light hydrocarbons resulted as by-product of petroleum refining (mixtures of (n + i) butanes, 52.28 � 63.20 vol.%, (1-, cis-, trans-, 2-) butenes, 28.64 � 36.43 vol.% and propane � propylene, 4.79 � 14.64 vol.%) over bifunctional 5% ZnO/HZSM-5 co-catalyst in a fixed-bed stainless-steel reactor (Twin Reactor System Naky) at 450�C, 4 atm. total pressure and at a space velocity (WHSV) of 1 h-1 have been investigated. The results indicate that the selectivity to light aromatics � benzene, toluene and xylenes (BTX) � and to both the gaseous C1, C2 - C4 hydrocarbons and liquid (i + n) C5 � C10 aliphatic hydrocarbons depends on the time on stream of the process. This is a result of coke deposition (polyunsaturated compounds) and catalyst deactivation. The aromatics BTX represent 59-60 wt% in the liquid product during the first 24-36 hours time-on-stream and only 20-30 wt% after 40 hours of reaction when the aliphatic hydrocarbon C5 � C10 (mostly iso) and ]C10 (denoted �oligo�) reach to 70 � 80 wt%. The aromatic products were principally toluene, xylenes and benzene, theirs concentration varying with the time on stream of the process. The initial aromatization process described as dehydrocyclodimerization of alkanes and alkenes, principally to aromatics BTX and molecular hydrogen is accompanied by an oligomerization, isomerisation, cracking and alkylation process to form finally in the liquid product an excessively mixture of iso- and normal- C5 � C10 aliphatic hydrocarbons and ] C10.