Paraffin�s and olefins in the cracked naphtha can be transformed into aromatics and iso-paraffins to reduce the olefins content as well to improve the octane number of the gasoline commercial fraction. In this work Ni-HZSM-5 bifunctional catalyst was prepared by ion exchange with Ni(NO3)2 aqueous solution. The activity of Ni-HZSM-5 (wt.% 1.34% Ni) catalyst prepared by ion exchange method was investigated in the conversion of light hydrocarbons resulted as by-products of petroleum refining process (mixtures of butenes and (normal + iso) butanes as main components). The obtained Ni-based catalyst has been compare with HZSM-catalyst. The conversion experiments have been performed in a fixed-bed stainless-steel reactor (Twin Reactor System Naky) at 450oC, under 4 atm. (over Ni-HZSM-5) and 8 atm. pressure (over HZSM-5), respectively and at a space velocity (WHSV) of 1h-1. The catalytic activity of (Ni-HZSM-5 catalyst) monitored over 10 catalytic tests (with regeneration of catalyst after each test) using a mixtures butanes-butylenes. The catalytic activity and selectivity towards liquid products - BTX aromatic hydrocarbons and oligo(iC5-iC10, nC5-nC10, ] C10) - depends on time streaming, composition of butanes-butylenes mixture and pressure. In the first hours of each test the aromatic BTX are the main component of the liquid product (connected with butylenes consume) and after that, the oligo fraction become predominant. The initial aromatization process described as dehydrocyclodimerization of alkanes and alkenes, principally to aromatics BTX and molecular hydrogen, is accompanied by oligomerization, isomerization, cracking and alkylation processes to form finally in the liquid phase product an excessively mixture of iso- and normal - C5 -C10 and ] C10 aliphatic hydrocarbons.