In this paper, we investigated the performance of thin-film transistors (TFTs) with different channel configurations including single-active-layer (SAL) Sn-Zn-O (TZO), dual-active-layers (DAL) In-Sn-O (ITO)/TZO, and triple-active-layers (TAL) TZO/ITO/TZO. The TAL TFTs were found to combine the advantages of SAL TFTs (a low off-state current) and DAL TFTs (a high mobility and a low threshold voltage). The proposed TAL TFTs exhibit superior electrical performance, e.g. a high on-off state current ratio of 2 × 108, a low threshold voltage of 0.63 V, a high field effect mobility of 128.6 cm2/Vs, and a low off-state current of 3.3 pA. The surface morphology and characteristics of the ITO and TZO films were investigated and the TZO film was found to be C-axis-aligned crystalline (CAAC). A simplified resistance model was deduced to explain the channel resistance of the proposed TFTs. At last, TAL TFTs with different channel lengths were also discussed to show the stability and the uniformity of our fabrication process. Owing to its low-processing temperature, superior electrical performance, and low cost, TFTs with the proposed TAL channel configuration are highly promising for flexible displays where the polymeric substrates are heat-sensitive and a low processing temperature is desirable.