Functionalization of metal oxides nanomaterial by different organic and inorganic species could considerably enhance the electrochemical performance of a supercapacitor. Here, we have synthesized and functionalized ZnO nanoparticles (NPs) via organic compounds of E. cognate and then doped the synthesized nanomaterials by NiO following hydrothermal route involving the bioactive compounds. As synthesized ZnO@NiO was analyzed by field emission-scanning electron microscopy at nanoscale. The organic functional groups were delineated by X-ray photoelectron spectroscopy as well as by Fourier transform infrared spectroscopy. What is more, Tauc plot revealed drastically decreased band gap energy of ZnO@NiO to 2.48 eV resulting in an enhanced electrochemical properties. Therefore, organic framework derived ZnO@NiO nanomaterial was scrutinized as an electrode for supercapacitor by galvanostatic charge-discharge, cyclicvoltammetry and electrochemical impedance spectroscopy. ZnO@NiO electrode demonstrated specific capacitance of 185 Fg −1 by cyclicvoltammetry, proposing its potential towards supercapacitor due to nanoscale particles and incorporated C, O, and N atoms of organic compounds.
K E Y W O R D Sbio-template, low band gap energy, nanostructures, stabilizing agents, supercapacitor, zinc oxides: nickel oxide