2018
DOI: 10.3390/app8020215
|View full text |Cite
|
Sign up to set email alerts
|

Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine

Abstract: Abstract:In this study, an air heated solar collector (AHSC) dryer was designed to determine the drying characteristics of the pear. Flat pear slices of 10 mm thickness were used in the experiments. The pears were dried both in the AHSC dryer and under the sun. Panel glass temperature, panel floor temperature, panel inlet temperature, panel outlet temperature, drying cabinet inlet temperature, drying cabinet outlet temperature, drying cabinet temperature, drying cabinet moisture, solar radiation, pear internal… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 31 publications
(22 citation statements)
references
References 23 publications
0
20
0
2
Order By: Relevance
“…This chapter is divided into 2 parts: data description and experimental results. To demonstrate completely the performance of WindNet proposed in this paper, this chapter will also include comparisons of very popular and commonly used machine learning algorithms, such as support vector machine (SVM) [33][34][35][36][37][38], random forest (RF) [39][40][41][42][43][44], decision tree (DT) [45][46][47][48][49][50] and MLP.…”
Section: Resultsmentioning
confidence: 99%
“…This chapter is divided into 2 parts: data description and experimental results. To demonstrate completely the performance of WindNet proposed in this paper, this chapter will also include comparisons of very popular and commonly used machine learning algorithms, such as support vector machine (SVM) [33][34][35][36][37][38], random forest (RF) [39][40][41][42][43][44], decision tree (DT) [45][46][47][48][49][50] and MLP.…”
Section: Resultsmentioning
confidence: 99%
“…ANN was used to estimate the energy performance, energy consumption, drying and thermal efficiency of the process. Das and Akpınar [16] have designed a solar-assisted drying system. They calculated the convective heat transfer coefficient of pear product in the drying system.…”
Section: Raw Materials Thickness (Mm)mentioning
confidence: 99%
“…In order to fully demonstrate the performance of the EPNet proposed in this paper, this chapter includes comparisons between Support Vector Machine (SVM) [25][26][27][28][29][30], Random Forest (RF) [31][32][33][34][35][36], Decision Tree (DT) [37][38][39][40][41][42], MLP, CNN and LSTM. Figure 6 is the Electric Power Markets (PJM) Regulation Zone Preliminary Billing Data [43] used in this experiment, this data records the regulation market capacity clearing price of every half hour in 2017.…”
Section: Resultsmentioning
confidence: 99%