Homoacetogens produce acetate from H 2 and CO 2 via the Wood-Ljungdahl pathway. Some homoacetogens have been isolated from the rumen, but these organisms are expected to be only part of the full diversity present. To survey the presence of rumen homoacetogens, we analyzed sequences of formyltetrahydrofolate synthetase (FTHFS), a key enzyme of the Wood-Ljungdahl pathway. A total of 275 partial sequences of genes encoding FTHFS were PCR amplified from rumen contents of a cow, two sheep, and a deer. Phylogenetic trees were constructed using these FTHFS gene sequences and the translated amino acid sequences, together with other sequences from public databases and from novel nonhomoacetogenic bacteria isolated from the rumen. Over 90% of the FTHFS sequences fell into 34 clusters defined with good bootstrap support. Few rumen-derived FTHFS sequences clustered with sequences of known homoacetogens. Conserved residues were identified in the deduced FTHFS amino acid sequences from known homoacetogens, and their presence in the other sequences was used to determine a "homoacetogen similarity" (HS) score. A homoacetogen FTHFS profile hidden Markov model (HoF-HMM) was used to assess the homology of rumen and homoacetogen FTHFS sequences. Many clusters had low HS scores and HoF-HMM matches, raising doubts about whether the sequences originated from homoacetogens. In keeping with these findings, FTHFS sequences from nonhomoacetogenic bacterial isolates grouped in these clusters with low scores. However, sequences that formed 10 clusters containing no known isolates but representing 15% of our FTHFS sequences from rumen samples had high HS scores and HoF-HMM matches and so could represent novel homoacetogens.Feed ingested by ruminant animals is fermented in the rumen by a complex community of microbes. This community produces, among other products, the volatile fatty acids acetate, propionate, and butyrate, which are absorbed across the rumen wall and satisfy a large part of the animals' carbon and energy requirements. Hydrogen gas (H 2 ) is also formed and is the major precursor of the methane (CH 4 ) formed in ruminant animals. This ruminant-derived CH 4 is a contributor to global greenhouse gas emissions (46) and also represents an energy loss for the animals (34). Proposed ruminant greenhouse gas mitigation strategies include using feeds that produce less CH 4 and more volatile fatty acids (31). Alternative strategies include interventions that slow or halt methanogenesis by vaccination, using natural inhibitors found in plants, and supplementing feed with fats and oils or small-molecule inhibitors (31, 32). In the absence of methanogenesis, accumulation of H 2 could lead to a decrease in the rate of feed fermentation (31, 53) and hence a decrease in animal productivity. Other microbes that use H 2 without producing methane could be valuable in conjunction with intervention strategies that inhibit methanogens. This possibility has sparked interest in possible inoculation of ruminants with alternative H 2 users.Bacteria tha...