Homoacetogenic bacteria are strict anaerobes capable of autotrophic growth on H(2)/CO(2) or CO, and of heterotrophic growth on a wide range of sugars, alcohols, methoxylated aromatic compounds and one carbon compounds, yielding acetate as their sole metabolic end-product. Batch activity tests on anaerobic granular sludge, using H(2)/CO(2) as a substrate and 2-bromoethanesulfonate (BES) as a specific methanogenic inhibitor revealed that H(2)/CO(2) conversion and concomitant acetate production commenced only after a lag period of 60-100 h. This finding suggests that the homoacetogenic population of digester sludge could be maintained by heterotrophic growth on sugars or other organic compounds, rather than by autotrophic growth on H(2)/CO(2). In the present study, two upflow anaerobic sludge bed (UASB) reactors were operated at 37 degrees C and 55 degrees C for two distinct trial periods, each characterised by the application of influents designed to enrich for homoacetogenic bacteria. Specific primers designed for the amplification of the functional gene encoding formyltetrahydrofolate synthetase (FTHFS), a key enzyme in the acetyl-CoA pathway of acetogenesis, were used as a specific probe for acetogenic bacteria. The diversity of acetogens in the granular sludge cultivated in each reactor was revealed by application of FTHFS targeted PCR. Results show that biomass acetogenic composition was dependent upon the operational temperature of the reactor and the substrate supplied as influent.
SummaryThe suitability of hornblende as a support for immobilized 0-fructofuranosidase (invertase) was studied, with regard to the physical stability of the support and the thermal and operational stability of the immobilized enzyme. Hornblende was more stable than Enzacryl-Alo or Enzacryl-TIO, and marginally more stable than porous glass. Invertase immobilized on hornblende was more stable during long-term operation than invertase immobilized on porous glass. An active preparation of immobilized invertase was obtained also on pyroxene particles.
C-terminal α-amidation of peptides is an important event in the course of pro-hormone and neuropeptide processing; it is a modification that contributes to the biological activity and stability of about 25 peptides in neural and endocrine systems. This laboratory has shown that bovine growth hormone (bGH) also has a catalytic function, i.e. peptidylglycine monooxygenase activity, which is the first step in the alpha-amidation of glycine-extended peptides. We report here that the peptidylglycine monooxygenase activity of monomeric bovine pituitary GH, in the presence of ascorbate, is stimulated by combination with oligomeric forms of bGH one of which is a hetero-oligomer with metallothionein. Three species of recombinant monomeric GH (bovine, human and chicken) also catalyze this monooxygenase reaction. Tetrahydrobiopterin also functions as a reductant - with a significantly greater turnover than achieved with ascorbate. These findings clarify the role of GH in peptidylglycine monooxygenation and provide an explanation for earlier observations that peptide amidation is not totally obliterated in the absence of ascorbate, in cultured pituitary cells or in vivo. The evolution of bifunctional GH is also discussed, as are some of the significances of the peptidylglycine monooxygenase activity of human GH in relation to peptides such as oxytocin, glucagon-like peptide-1 and peptide PYY.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.