In view of the frequent failures occurring in rolling bearings, the strong background noise present in signals, weak features, and difficulties associated with extracting fault characteristics, a method of enhancing and diagnosing rolling bearing faults based on coarse-grained lattice features (CGLFs) is proposed. First, the vibrational signals of bearings are subjected to adaptive filtering to eliminate background noise. Second, frequency-domain transformation is performed, and a coarse-grained approach is used to continuously segment the spectrum. Within each segment, amplitude-enhancement operations are executed, transforming the data into a CGLF graph that enhances fault characteristics. This graph is then fed into a Swin Transformer-based pattern-recognition network. Third and finally, a high-precision fault diagnosis model is constructed using fully connected layers and Softmax, enabling the diagnosis of bearing faults. The fault recognition accuracy reaches 98.30% and 98.50% with public datasets and laboratory data, respectively, thereby validating the feasibility and effectiveness of the proposed method. This research offers an efficient and feasible fault diagnosis approach for rolling bearings.