Purpose. Evaluation of the effect of changing the width of the impeller blades on the characteristics of a torque-flow pump. Searching for the optimal blade extension into the free chamber of the pump. A torque-flow pump of the “Turo” type SVN 500/32 was chosen as the subject of the research work. Methodology. A number of numerical experiments were conducted to determine the flow structure in the flowing part of a torque-flow pump. The width of the impeller blade was chosen as a variable. Numerical experiments were carried out using the ANSYS CFX software package. The integral parameters of the researched pump were determined in order to build the integral characteristics. Findings. The structure of the general flow and toroidal vortex was studied and analyzed in the torque-flow pump. A flow model was built in a torque-flow pumps with basic and modernized design. A relationship between the parameters of the pump and the change in the impeller blade width was found. The width of the impeller blade was changed in the range from min = -20 to max = +100 mm. Originality. The paper researched the effect of additional hydraulic losses caused by the mismatch between the center of the toroidal vortex and the edges of the impeller blades on the integral characteristics of the torque-flow pump. Practical value. A significant increase in the operating parameters of the “Turo” type torque-flow pump was achieved with the help of modernization of the impeller design. This allows expanding the range of the pump’s operation. At the same time, it is not required to replace such expensive elements as the pump casing.