Keloids are proliferative dermal growths representing a pathological wound-healing response. We report high proliferation rates in normal (NF) and keloid-derived fibroblasts (KF) cocultured with keloid-derived keratinocytes (KK). IGF binding protein (IGFBP)-3 mRNA and secreted IGFBP-3 in conditioned media were increased in NF cocultured with KK compared with NF but markedly reduced in KF cocultured with KK or normal keratinocytes (NK). IGFBP-2 and IGFBP-4 mRNA levels were elevated, whereas IGFBP-5 mRNA was decreased in KF cocultured with KK or NK. Significant increases in IGFBP-2 and -4 mRNA in KF cocultured with KK did not correlate with protein secretion. Downstream IGF signaling cascade components, phospho-Raf, phospho-MEK1/2, phospho-MAPK, PI-3 kinase, phospho-Akt, and phospho-Elk-1, were elevated in KF cocultured with KK. Addition of recombinant human IGFBP-3 or antibodies against IGF-I or IGF-IR significantly inhibited proliferation of KF. The bioavailability of IGF-I may be related to the levels of IGFBP-3 produced, which in turn influences KF proliferation, suggesting that modulation of IGF-I, IGF-IR, and IGFBP-3, individually or in combination, may represent novel approaches to the treatment of keloids.