Keloids, partially considered as benign tumors, represent the most extreme example of cutaneous scarring that uniquely afflicts humans as a pathological response to wound healing. It is characterized by excessive deposition of collagen and other extracellular matrix components by dermal fibroblasts. Upon cutaneous injury, cocktails of chemokines, cytokines and growth factors are secreted temporally and spatially to direct appropriate responses from neutrophils, macrophages, keratinocytes and fibroblasts to facilitate normal wound healing. Signal transducer and activator of transcription 3 (Stat3) is an oncogene and a latent transcription factor activated by various cytokines and growth factors. We investigated the possible role of Stat3 in keloid scar pathogenesis by examining skin tissue and cultured fibroblasts from keloid-scarred patients. We observed enhanced expression and phosphorylation of Stat3 in keloid scar tissue, and in cultured keloid fibroblasts (KFs) in vitro. Increased activation of Janus kinase (Jak)2, but not Jak1, was detected in KFs, and suppression of Jak2 by its inhibitor repressed Stat3 Y705 phosphorylation. Inhibition of Stat3 expression and phosphorylation by short interfering RNA or Cucurbitacin I resulted in the loss of collagen production, impaired proliferation and delayed cell migration in KFs. We show, for the first time, a role of Stat3 in keloid pathogenesis. Inhibitors of Stat3 may be useful therapeutic strategies for the prospective treatment of keloid scars.
Keloid scars represent a pathological response to cutaneous injury, reflecting a new set point between synthesis and degradation biased toward extracellular matrix (ECM) collagen accumulation. Using a serum-free two-chamber coculture model, we recently demonstrated a significant increase in normal fibroblast proliferation when cocultured with keloid-derived keratinocytes. We hypothesized that similar keratinocytefibroblast interactions might influence fibroblast collagen production and examined conditioned media and cell lysate from coculture for collagen I and III production by Western blot, allied with Northern analysis for procollagen I and III mRNA. Normal fibroblasts cocultured with keloid keratinocytes produced increased soluble collagen I and III with a corresponding increase in procollagen I and III mRNA transcript levels. This was associated with decreased insoluble collagen from cell lysate. When keloid fibroblasts were cocultured with keloid keratinocytes, both soluble and insoluble collagen were increased with associated procollagen III mRNA upregulation. Transmission electron microscopy of normal fibroblasts cocultured with keloid keratinocytes showed an ECM appearance similar to in vivo keloid tissue, an appearance not seen when normal fibroblasts were cocultured with normal keratinocytes. keloids; epithelial-mesenchymal interactions; keratinocyte induction; serum-free coculture
Keloids are disfiguring, proliferative scars that represent a pathological response to cutaneous injury. The overabundant extracellular matrix formation, largely from collagen deposition, is characteristic of these lesions and has led to investigations into the role of the fibroblast in its pathogenesis. Curiously, the role of the epidermis in extracellular matrix collagen deposition of normal skin has been established, but a similar hypothesis in keloids has not been investigated. The aim of this study was to investigate the influence of keloid epithelial keratinocytes on the growth and proliferation of normal fibroblasts in an in vitro serum-free co-culture system. A permeable membrane separated two chambers; the upper chamber contained a fully differentiated stratified epithelium derived from the skin of excised earlobe keloid specimens, whereas the lower chamber contained a monolayer of normal or keloid fibroblasts. Both cell types were nourished by serum-free medium from the lower chamber. Epithelial keratinocytes from five separate earlobe keloid specimens were investigated. Four sets of quadruplicates were performed for each specimen co-cultured with normal fibroblasts or keloid-derived fibroblasts. Controls consisted of (1) normal keratinocytes co-cultured with normal fibroblasts, and (2) fibroblasts grown in serum-free media in the absence of keratinocytes in the upper chamber. Fibroblasts were indirectly quantified by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay, with results confirmed by DNA content measurement, at days 1 and 5 after the co- culture initiation.Significantly, increased proliferation was seen in fibroblasts co-cultured with keloid keratinocytes, as compared with the normal keratinocyte controls at day 5 (analysis of variance, p < 0.001). These results strongly suggest that the overlying epidermal keratinocytes of the keloid may have an important, previously unappreciated role in keloid pathogenesis using paracrine or epithelial-mesenchymal signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.