2020
DOI: 10.3390/nano10081493
|View full text |Cite
|
Sign up to set email alerts
|

Investigation of WO3 Electrodeposition Leading to Nanostructured Thin Films

Abstract: Nanostructured WO3 represents a promising material for electrochromic and sensing devices. In this scenario, electrodeposition is a promising low-cost approach for careful production. The electrodeposition of tungsten oxide film from a peroxo-tungstic-acid (PTA) solution is investigated. WO3 is synthetized onto Indium doped Tin Oxide (ITO) substrates, in a variety of shapes, from a fragmentary, thin layer up to a thick continuous film. Samples were investigated by scanning electron (SEM) and atomic force micro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
14
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 30 publications
(17 citation statements)
references
References 30 publications
1
14
0
2
Order By: Relevance
“…4,16,17 These negative aspects can be strongly reduced by an effective strategy using nanostructures, with high surface-to-volume ratio and low resistance to further improve the electrochemical properties, of WO 3 as cathodes for HER. WO 3 nanostructures can be effectively synthesized by hydrothermal, 18 sputtering, 19 thermal evaporation, 20 sol−gel, 21 and electrodeposition 22 methods. Nevertheless, in its pristine form, nanostructured WO 3 does not give excellent HER performances, as the atomic hydrogen adsorption free energy (ΔG H ) on the W site is high, leading to a poor HER activity, as explained by Sabatier's principle, for which ΔG H close to zero gives better catalytic performances.…”
Section: Introductionmentioning
confidence: 99%
“…4,16,17 These negative aspects can be strongly reduced by an effective strategy using nanostructures, with high surface-to-volume ratio and low resistance to further improve the electrochemical properties, of WO 3 as cathodes for HER. WO 3 nanostructures can be effectively synthesized by hydrothermal, 18 sputtering, 19 thermal evaporation, 20 sol−gel, 21 and electrodeposition 22 methods. Nevertheless, in its pristine form, nanostructured WO 3 does not give excellent HER performances, as the atomic hydrogen adsorption free energy (ΔG H ) on the W site is high, leading to a poor HER activity, as explained by Sabatier's principle, for which ΔG H close to zero gives better catalytic performances.…”
Section: Introductionmentioning
confidence: 99%
“…Электрохромные пленки WO3 могут быть получены различными физическими и химическими методами, наиболее изучено осаждение WO3 пленок на прозрачный ITO-электрод (In2O3)0,9-(SnO2)), например известны следующие методы: магнетронное напыление [10], золь-гель метод [11], химическое осаждение из паровой фазы [12], электрохимическое осаждение [13], спрей-пиролиз [14] и др. Одним из наиболее простых и экономичных методов, позволяющих получать пленки WO3 на токопроводящих подложках, при этом обладающий хорошей воcпроизводимостью электрохромных свойств, является электрохимическое (катодное) осаждение [15][16][17].…”
Section: There Are Many Electrochemical and Chemical Methods That Are Suitable For Preparation Tungsten Trioxide (Wo3) Films However Manyunclassified
“…В правой стороне реакции x -это количество электронов, которыми обмениваются для осаждения некоторого количества WO3, при этом связывая ток на рабочем электроде со скоростью осаждения x=0 или x=4, что приводит к высокому или нулевому образованию O2 соответственно. Низкое или высокое значение x cвязано с плотностью тока [13]. Процесс катодного осаждения пленок WO3, осуществлялся по трехэлектродной схеме (рис.…”
Section: материалы и методыunclassified
“…Although, understanding gas sensing is critical, many researchers are widely accepted empirical models to obtain gas sensing results through a trial-and-error method. Still, the various deposition methods have been used to construct WO 3 thin films with different morphologies such as thermal evaporation (Li et al, 2017), laser beam ablation (Nishijima et al, 2020), molecular beam epitaxy (Li et al, 2015), electron beam evaporation (Madhuri and Babu, 2016), R.F sputtering (Bose et al, 2018), D.C. sputtering (Horprathuma et al, 2013), Sol-gel technique (Yano et al, 2018), Electrodeposition (Mineo et al, 2020), chemical bath (Wang et al, 2020) and spray pyrolysis (Cho et al, 2013). Each method has a set of parameters to control the morphology of WO 3 thin films.…”
Section: Introductionmentioning
confidence: 99%