Due to their high strength, high toughness, and corrosion resistance, high-strength aluminum alloys have attracted great scientific and technological attention in the fields of aerospace, navigation, high-speed railways, and automobiles. However, the fracture toughness and impact toughness of high-strength aluminum alloys decrease when their strength increases. In order to solve the above contradiction, there are currently three main control strategies: adjusting the alloying elements, developing new heat treatment processes, and using different deformation methods. This paper first analyzes the existing problems in the preparation of high-strength aluminum alloys, summarizes the strengthening and toughening mechanisms in high-strength aluminum alloys, and analyzes the feasibility of matching high-strength aluminum alloys in strength and toughness. Then, this paper summarizes the research progress towards adjusting the technology of high-strength aluminum alloys based on theoretical analysis and experimental verification, including the adjustment of process parameters and the resulting mechanical properties, as well as new ideas for research on high-strength aluminum alloys. Finally, the main unsolved problems, challenges, and future research directions for the strengthening and toughening of high-strength aluminum alloys are systematically emphasized. It is expected that this work could provide feasible new ideas for the development of high-strength and high-toughness aluminum alloys with high reliability and long service life.