Bidirectional pulsed current (BPC) heating has proven to be an effective method for internal heating. However, current research has primarily focused on the impact of symmetrical BPC on battery heat generation, while neglecting the influence of different BPC parameters. To address this gap, this paper investigates the effects of various BPC parameters on battery heat generation. Initially, an electro-thermal coupled model of the battery is constructed based on the results of electrochemical impedance spectroscopy (EIS) tests conducted at different temperatures and amplitudes at 20% state of charge (SOC). The validation results of the model demonstrate that the absolute errors of voltage and temperature are generally less than 50 mV and 1.2 °C. Subsequently, the influence of BPC parameters on battery heat generation is examined under different terminal voltage constraints, temperatures, and frequencies. The findings at 20% SOC reveal that symmetrical BPC does not consistently correspond to the maximum heating power. The proportion of charge time and discharge time in one cycle, corresponding to the maximum heating power, varies depending on the charge and discharge cut-off voltages. Moreover, these variations differ across frequencies and temperatures. When the terminal voltage is constrained between 3 V and 4.2 V, the maximum heat power corresponds to a discharge time share of 0.55 in one cycle. In conclusion, the results underscore the complex relationship between BPC parameters and battery heat generation, which can further enhance our understanding of effective heating strategies for batteries.