This is a repository copy of Prediction of confined, vented methane-hydrogen explosions using a computational fluid dynamic approach.
ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
ABSTRACTHydrogen is seen as an important energy carrier for the future, with a great benefit being carbon-free emissions at its point of use. A hydrogen transport system between manufacturing sites and end users is required, and one solution proposed is its addition to existing natural gas pipeline networks. A major concern with this approach is that the explosion hazard may be increased, relative to natural gas, should an accidental release occur. This paper describes a mathematical model of confined,