Purpose
Long intergenic non-protein coding RNA 885 (LINC00885) has been well studied in breast cancer; however, its contribution in cervical cancer remains unclear. In this study, we aimed to determine the detailed functions of LINC00885 in cervical cancer and elucidate the underlying molecular regulation mechanism.
Methods
The expression status of LINC00885 in cervical cancer was determined using reverse transcription-quantitative polymerase chain reaction and by searching The Cancer Genome Atlas database. The detailed functions of LINC00885 in cervical cancer cells were confirmed using Cell Counting Kit 8 assay, flow cytometry analysis, Transwell cell migration and invasion assays, and tumor xenograft assay. Mechanistic experiments included bioinformatics prediction, RNA immunoprecipitation, luciferase reporter assay, and rescue experiments.
Results
LINC00885 was clearly overexpressed in cervical cancer, which was linked with unfavorable clinical outcomes. Functionally, LINC00885 deficiency suppressed cervical cancer cell proliferation, migration, and invasion but stimulated cell apoptosis in vitro. Furthermore, loss of LINC00885 restricted the growth of cervical cancer cells in vivo. Mechanistically, LINC00885 functioned as a competitive endogenous RNA for microRNA-432-5p (miR-432-5p) in cervical cancer. Furthermore, metastasis-associated colon cancer 1 (MACC1) was confirmed as the direct target of miR-432-5p, and LINC00885 could enhance MACC1 expression by sequestering miR-432-5p. Rescue experiments revealed that silencing of miR-432-5p or upregulation of MACC1 expression could effectively counteract the restrained aggressive properties of cervical cancer cells induced by LINC00885 deficiency.
Conclusion
LINC00885 upregulated MACC1 expression in cervical cancer cells by sponging miR-432-5p, thereby promoting cancer progression. The LINC00885/miR-432-5p/MACC1 pathway may help in the identification of potential prognostic biomarkers and therapeutic targets in cervical cancer.