Altered expression levels of the long noncoding RNA (lncRNA) nuclear‐enriched abundant transcript 1 (NEAT1) have been reported in different types of cancer. More than half of the NEAT1 studies in cancer have been published within the last 2 years. In this review, we discuss very recent developments and insights into NEAT1 contribution to carcinogenesis. Summarizing the literature, it becomes obvious that NEAT1 is a lncRNA highly de‐/upregulated in a variety of cancer entities, in which it primarily acts as a competing endogenous RNA (ceRNA) which sponges tumor‐suppressive microRNA (miRNA). The sponged miRNA lose their ability to degrade, silence, or hamper translation of their downstream—mostly oncogenic—target transcripts, ultimately promoting carcinogenesis. This role of NEAT1 function in tumorigenesis suggests it may be a prognostic biomarker as well as potential therapeutic target, pending the completion of further studies into the underlying mechanisms.
Long non-coding RNAs (lncRNAs) are involved in a variety of biological and cellular processes as well as in physiologic and pathophysiologic events. This review summarizes recent literature about the role of the lncRNA nuclear enriched abundant transcript 1 (NEAT1) in non-cancerous diseases with a special focus on viral infections and neurodegenerative diseases. In contrast to its role as competing endogenous RNA (ceRNA) in carcinogenesis, NEAT1’s function in non-cancerous diseases predominantly focuses on paraspeckle-mediated effects on gene expression. This involves processes such as nuclear retention of mRNAs or sequestration of paraspeckle proteins from specific promoters, resulting in transcriptional induction or repression of genes involved in regulating the immune system or neurodegenerative processes. NEAT1 expression is aberrantly—mostly upregulated—in non-cancerous pathological conditions, indicating that it could serve as potential prognostic biomarker. Additional studies are needed to elucidate NEAT1’s capability to be a therapeutic target for non-cancerous diseases.
Ferroptosis is a recently defined form of regulated cell death, which is biochemically and morphologically distinct from traditional forms of programmed cell death such as apoptosis or necrosis. It is driven by iron, reactive oxygen species, and phospholipids that are oxidatively damaged, ultimately resulting in mitochondrial damage and breakdown of membrane integrity. Numerous cellular signaling pathways and molecules are involved in the regulation of ferroptosis, including enzymes that control the cellular redox status. Alterations in the ferroptosis-regulating network can contribute to the development of various diseases, including cancer. Evidence suggests that ferroptosis is commonly suppressed in cancer cells, allowing them to survive and progress. However, cancer cells which are resistant to common chemotherapeutic drugs seem to be highly susceptible to ferroptosis inducers, highlighting the great potential of pharmacologic modulation of ferroptosis for cancer treatment. Non-coding RNAs (ncRNAs) are considered master regulators of various cellular processes, particularly in cancer where they have been implicated in all hallmarks of cancer. Recent work also demonstrated their involvement in the molecular control of ferroptosis. Hence, ncRNA-based therapeutics represent an exciting alternative to modulate ferroptosis for cancer therapy. This review summarizes the ncRNAs implicated in the regulation of ferroptosis in cancer and highlights their underlying molecular mechanisms in the light of potential therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.