Background: MEF2C is strongly linked to various neurodevelopmental disorders (NDDs) including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity. Mice constitutively lacking one copy ofMef2c, or selectively lacking both copies ofMef2cin cortical excitatory neurons, display a variety of behavioral phenotypes associated with NDDs. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic inhibitory neurons, but its function in those cell types remains largely unknown. Methods: Using conditional deletions of theMef2cgene in mice, we investigated the role of MEF2C in Parvalbumin-expressing Interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at two developmental timepoints. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic interneurons impacts their survival and maturation, and alters brain function and behavior. Results: Loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic interneurons lead to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. Conclusions: MEF2C expression is critical for the development of cortical GABAergic interneurons, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic interneurons, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.