Kisspeptin and its cognate receptor, GPR54, are critical for reproductive development and for the regulation of gonadotropin-releasing hormone (GnRH) secretion. Although kisspeptin has been found to depolarize GnRH neurons, the underlying ionic mechanism has not been elucidated. Presently, we found that kisspeptin depolarized GnRH neurons in a concentration-dependent manner with a maximum depolarization of 22.6 Ϯ 0.6 mV and EC 50 of 2.8 Ϯ 0.2 nM. Under voltage-clamp conditions, kisspeptin induced an inward current of 18.2 Ϯ 1.6 pA (V hold ϭ Ϫ60 mV) that reversed near Ϫ115 mV in GnRH neurons. The more negative reversal potential than E K ϩ (Ϫ90 mV) was caused by the concurrent inhibition of barium-sensitive, inwardly rectifying (Kir) potassium channels and activation of sodiumdependent, nonselective cationic channels (NSCCs). Indeed, reducing extracellular Na ϩ (to 5 mM) essentially eliminated the kisspeptininduced inward current. The current-voltage relationships of the kisspeptin-activated NSCC currents exhibited double rectification with negative slope conductance below Ϫ40 mV in the majority of the cells.
Pharmacological examination showed that the kisspeptin-induced inward currents were blocked by TRPC (canonical transient receptor potential) channel blockers 2-APB (2-aminoethyl diphenylborinate), flufenamic acid, SKF96365 (1-[-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), and Cd
2ϩ, but not by lanthanum (100 M). Furthermore, single-cell reverse transcription-PCR analysis revealed that TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 subunits were expressed in GnRH neurons. Therefore, it appears that kisspeptin depolarizes GnRH neurons through activating TRPC-like channels and, to a lesser extent, inhibition of Kir channels. These actions of kisspeptin contribute to the pronounced excitation of GnRH neurons that is critical for mammalian reproduction.