Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10 g/kg DEG and blood, kidney and liver tissues were collected at 48 h. Both rat strains treated with 10 g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUN and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5 g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10 g/kg DEG, but no DGA was present at 2 or 5 g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments.