A standard sample mixture containing 51 pesticides was separated by gas chromatography (GC), and the constituents were identified by mass spectrometry (MS) using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. A two-dimensional display of the GC/MS was successfully used for the determination of these compounds. A molecular ion was observed for 38 of the compounds at 267 nm and for 30 of the compounds at 800 nm, in contrast to 27 among 50 compounds when electron ionization was used. These results suggest that the ultraviolet laser is superior to the near-infrared laser for molecular weight determinations and for a more reliable analysis of these compounds. In order to study the conditions for optimal ionization, the experimental data were examined using the spectral properties (i.e., the excitation and ionization energies and absorption spectra for the neutral and ionized species) obtained by quantum chemical calculations. A few molecules remained unexplained by the currently reported rules, requiring additional rules for developing a full understanding of the femtosecond ionization process. The pesticides in the homogenized matrix obtained from kabosu ( citrus sphaerocarpa) were measured using lasers emitting at 267 and 800 nm. The pesticides were clearly separated and measured on the two-dimensional display, especially for the data measured at 267 nm, suggesting that this technique would have potential for use in the practical trace analysis of the pesticides in the environment.