This paper studies the role of B2O3 in the radiation shielding properties of (100-x)(60TeO2-40PbO)-xB2O3 glass systems where x = 0, 1, 2, 3, 4 and 5 mol%. Through the scanning electron microscope (SEM) and X-ray diffraction (XRD) tests of the glass, the structure of the glass was studied. Physical radiation sources (57Co, 60Co, 137Cs, 133Ba, and 241Am) and WinXCOM software were used to experimentally and theoretically calculate the radiation properties of the glass, respectively. The gamma shielding ability of the glass was evaluated using its mass decay coefficient (μm), half-value layer (HVL), mean free path (MFP) and effective atomic number (Zeff). The neutron shielding ability of the glass was evaluated by calculating the fast neutron removal cross-section (RCS) value. The glass’s gamma and neutron shielding properties were compared to various ordinary concrete and other tellurite glasses. The measured mass decay coefficients agree well with the theoretical values obtained using WinXCOM software. Low HVL, MFP, and high μm, Zeff, and RCS values indicate that this series of glass materials have good shielding properties. According to the obtained results, among the glass samples doped with B2O3, the TPB-1 glass sample showed the best radiation shielding performance.