Abstract. Human telomerase reverse transcriptase (hTERT)is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. It has been reported that telomerase and hTERT are significantly upregulated in majority of cancers including cervical cancer, thus, downregulation of hTERT is a promising target in malignant tumor treatment. We established a short interfering RNA (siRNA) targeting hTERT, and transfected it into HeLa cells (a cervical cancer cell line) to investi gate the effect of cell proliferation, apoptosis, migration and invasion in cervical cancer cells. The results showed that siRNA targeting hTERT could effectively knock down hTERT expression, remarkably suppress telomerase activity, cell proliferation, migration and invasion, and induced cell apoptosis of cervical cancers cells in vitro. In addition, we evaluated whether siRNA targeting hTERT affects tumor growth in nude mice, and found that it dramatically inhibited tumorigenesis and growth of mice injected with siRNA targeting hTERT. Furthermore, we also found that knockdown of hTERT was able to significantly suppress constitutive phosphorylation of Akt, PI3K, which might imply that reduction of hTERT inhibited tumor growth via the PI3K/ Akt signaling pathway to some extent. These results suggest that the suppression of hTERT expression by siRNA inhibits cervical cancer cell growth in vitro and in vivo, and may provide a novel target for anticancer gene therapy.
IntroductionCervical cancer is caused by a multistep process that involves transformation of the normal cervical epithelium to a preneoplastic cervical intraepithelial neoplasia that is subsequently transformed to invasive cervical cancer (1,2). The incidence and mortality of invasive cervical cancer have steadily decreased (3), and cervical cancer remains the third most common cancer in women worldwide (4) and the leading malignancy in developing countries, accounting for 83% of all cancer cases (5). Although well organized screening and early therapeutic schedules have been carried out, the occurrence of invasive cervical cancer remains high in developing areas (6). Furthermore, as the understanding of key cellular pathways involved in tumor growth has improved, molecular targeted therapies have been widely exploited. Therefore, the development of new therapeutic strategies bases on molecular targeted therapies is necessary to improve survival in patients with cervical cancer.Telomerase plays a key role in conferring immortality to cancer cells through regulation of telomere length (7,8). It synthesizes the telomeric repeats at the ends of chromosomes and replaces the progressively lost end sequences during each cell cycle, allowing cells to escape mortality and continue to proliferate. The reverse transcriptase telomerase is composed of two core components: a ubiquitously expressed RNA component (hTR), and a catalytic subunit human telomerase reverse transcriptase (hTERT) which expression is limited to the formation of a catalytically active enzyme (9) and ...