In this study, 117,718 ionospheric perturbations, with a space size (t) of 20–300 s but no amplitude (A) limit, were automatically globally searched via software utilizing ion density data measured by the DEMETER satellite for over 6 years. The influence of geomagnetic storms on the ionosphere was first examined. The results demonstrated that storms can globally enhance positive ionospheric irregularities but rarely induce plasma variations of more than 100%. The probability of PERs with a space size falling in 200–300 s (1400–2100 km if a satellite velocity of 7 km/s is considered) occurring in a geomagnetically perturbed period shows more significance than that in a quiet period. Second, statistical work was performed on ion PERs to check their dependence on local time, and it was shown that 24.8% of the perturbations appeared during the daytime (10:30 LT) and 75.2% appeared during the nighttime (22:30 LT). Ionospheric fluctuations with an absolute amplitude of A < 10% tend to be background variations, and the percentages of positive perturbations with a small A < 20% occur at an amount of 64% during the daytime and 26.8% during the nighttime, but this number is reversed for mid–large-amplitude PERs. Large positive PERs with A > 100% mostly occurred at night and negative ones with A < −100% occurred entirely at night. There was a demarcation point in the space size of t = 120 s, and the occurrence probabilities of day PERs were always higher than that of nighttime ones before this point, while this trend was contrary after this point. Finally, distributions of PERs according to different ranges of amplitude and space scale were characterized by typical seasonal variations either in the daytime or nighttime. EIA only exists in the dayside equinox and winter, occupying two low-latitude crests with a lower Np in both hemispheres. Large WSAs appear within all periods, except for dayside summer, and are full of PERs with an enhanced amplitude, especially on winter nights. The WN-like structure is obvious during all seasons, showing large-scale space. On the other hand, several magnetically anomalous zones of planetary-scale non-dipole fields, such as the SAMA, Northern Africa anomaly, and so on, were also successfully detected by extreme negative ion perturbations during this time.