The high quantum efficiency of photosynthetic complexes has inspired researchers to explore new routes to utilize this process for photovoltaic devices. Quantum coherence has been demonstrated to play a crucial role within this process. Herein, we propose a three-dipole system as a model of a new photocell type which exploits the coherence among its three dipoles. We have proved that the efficiency of such a photocell is greatly enhanced by quantum coherence. We have also predicted that the photocurrents can be enhanced by about 49.5% in such a coherent coupled dipole system compared with the uncoupled dipoles. These results suggest a promising novel design aspect of photosynthesis-mimicking photovoltaic devices.
The radical pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields. However, little research has been done to explore the role of quantum entanglement in this mechanism. In this paper, we study the lifetime of radical pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also demonstrate that, due to a lack of orientational sensitivity of the entanglement in the geomagnetic field, the birds are not able to orient themselves by the mechanism based directly on radical-pair entanglement. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of these factors are not present in the previous models.
Thin film flexoelectricity is attracting more attention because of its enhanced effect and potential application in electronic devices. Here we find that a mechanical bending induced flexoelectricity significantly modulates the electrical transport properties of the interfacial two-dimensional electron gas (2DEG) at the LaAlO 3 =SrTiO 3 (LAO=STO) heterostructure. Under variant bending states, both the carrier density and mobility of the 2DEG are changed according to the flexoelectric polarization direction, showing an electric field effect modulation. By measuring the flexoelectric response of LAO, it is found that the effective flexoelectricity in the LAO thin film is enhanced by 3 orders compared to its bulk. These results broaden the horizon of study on the flexoelectricity effect in the hetero-oxide interface and more research on the oxide interfacial flexoelectricity may be stimulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.