2021 5th International Conference on Computing Methodologies and Communication (ICCMC) 2021
DOI: 10.1109/iccmc51019.2021.9418264
|View full text |Cite
|
Sign up to set email alerts
|

IoT based Intelligent Attendance Monitoring with Face Recognition Scheme

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 12 publications
0
5
0
2
Order By: Relevance
“…The dataset available in the Ministry of Health & Family Welfare, India [14], COVID-19 tracker [15,21] and open dataset of COVID-19 provided by Kaggle site [16] have been used for analysis. The dataset contains state-wise infected cases of patients in India.…”
Section: Methodsmentioning
confidence: 99%
“…The dataset available in the Ministry of Health & Family Welfare, India [14], COVID-19 tracker [15,21] and open dataset of COVID-19 provided by Kaggle site [16] have been used for analysis. The dataset contains state-wise infected cases of patients in India.…”
Section: Methodsmentioning
confidence: 99%
“…No communicable Disease Risk Assessment and Prediction Ferdousi, Rahatara, Hossain, M. Anwar and Saddik, Abdulmotaleb performed CPS analysis using machine learning. El [22] used methods such Bagging, AdaBoost, RT, Logistic Regression, SVM (Poly Kernel), and Navies Bayes to improve the accuracy of the machine learning classification algorithms RF and RT to 94%. Sivaranjani, S., Ananya, S., Aravinth, J., and Karthika, R. [26] used machine learning techniques that included feature selection and dimensionality reduction.…”
Section: Literature Reviewmentioning
confidence: 99%
“…• визначення зон пiдвищеного ризику з найбiльшою небезпекою можливого поширення коронавiрусу. Останнє набуває додаткової значущостi в умовах поширення високозаразних штамiв COVID-19, як-от «омiкрон» [16].…”
Section: змIни освIтнiх застосувань систем машинного зору спричиненI ...unclassified
“…Такi системи можуть бути реалiзованi апаратно на основi Raspberrypi [16] iз застосуванням згорткових нейронних мереж -класу глибинних нейронних мереж, найбiльш часто застосовуваних для аналiзу вiзуальних зображень [3,12,16] • Scikit-Image -бiблiотека для обробки зображень, надбудова SciPy (Python);…”
Section: змIни освIтнiх застосувань систем машинного зору спричиненI ...unclassified